TECHNICAL SPECIFICATIONS TRACTION ELEMENTS PzS, PzB

MATERIALS	PzS/PzB
Box/Lid	Polypropylene
Separators	PVC/Polyethylene
Acid	99,99%
Alloy	PbSb 2%
Sulfuric acid	1,28 g/

1. Discharge characteristics

Nominal voltage	2V
Nominal capacity at 5-hour regime of discharging Cn (Ah)	From catalogue
Nominal current capacity /A/	In=Cn(Ah)/5(h)
Final discharge voltage Ur	1,7 V
Final charge voltage	2,60÷2,70 V
Electrolyte density in fully charged condition	$1,28 \pm 0.01 \text{ g/cm}^3$
	at 30°C

2. Characteristics of self-discharge

The Self-discharge of traction batteries, at temperature $+30^{\circ}$ C after being in fully charged condition 30 days, should be not more than 1 %

3. Batteries' lifetime - characteristics

Number of Charging – discharging cycles 1200 – when following the instructions presented by the manufacturer.

4. Temperature effect on the capacity.

The capacity of the traction batteries is considered to be true for the temperature of 30°C. If during the testing of the capacity the degrees are different from 30°C, the capacity may be equaled to 30°C using the following formula:

Ca =
$$\frac{C}{1+0,006(\text{Tcp.} - 30^{\circ}\text{C})}$$

Ca - True capacity.

C - Measured capacity.

Tcp. -Average temperature during the testing.

For practical purposes the true capacity could be calculated by using the following way:

- raising the temperature above 30°C the measured capacity will be increased with 0,6% per every degree.
- decreasing the temperature under 30°C the measured capacity will be decreased with 0,6% per every degree.