TECHNICAL DATA SHEET

M24DH

CYCLIC

SOLAR

MARINE

AVAILABLE TERMINAL STYLES:

VENT CAP OPTIONS:

PHYSICAL SPECIFICATIONS

BCI Group Size	Model Description	Nominal Voltage	Length		Width		Container Height		Terminal Height		Weight		Cover & Container Material	Case to Cover Seal Method
			in	mm	in	mm	in	mm	in	mm	lbs	kgs	Container Material	Sear method
24	M24DH	12	10.88	276.	6.75	171	8.50	216	9.38	238	50	22.7	Polypropylene Plastic	Heat Seal

ELECTRICAL SPECIFICATIONS

Ampere Hour Capacity (Ah)								Discharg	e Capacity	Minutes	KWH (kWh)	Internal Resistance	
100 Hr	72 Hr	48 Hr	20 Hr	10 Hr	5 Hr	2 Hr	100A	75A	50A	25A	10A	100 Hr	80°F/27°C
130	120	104	95	81	75	56	23	33	57	140	434	1,560	7.2mΩ

CHARGING INSTRUCTIONS

We specifie the following standard battery charge profile for the M24DH deep cycle battery when used in an electric vehicle service:

Phase 1: Constant Current (I1) | 1 = highest amperage available < 20 amps

Phase 1: Constant Current (I1)I1 = minimum amperage available > 10 amps

Normal transition to Phase 2 at 2.37 Volts Per Cell. Safety transition to END OF CHARGE of $dV/dt < 0V/1 \, hr$, $dt = 1 \, hr$.

Safety transition to END OF CHARGE of dV / dt < 0V / 1 hr, dt = 1 h (NEGATIVE SLOPE).

Timeout for Phase 1 = 10 hours.

Phase 2: Constant Voltage (U2)U2 = 2.37 VPC

Normal Transition to Phase 3 at 12 = 3.5 amps or approximate. Safety transition to END OF CHARGE of $1 \, \text{dl/dt} \, 1 < 0.4$ amp $/ \, 1 \, \text{hr}$, $\, \text{dt} = 1 \, \text{hr}$.

Phase 3: Constant Current (I3) I3 = 3.5 amps or approximate.

Normal transition to END OF CHARGE at 115 - 118% of AH returned.

Timeout for charging phases 1 - 3 at 16 hours. Temperature compensation coefficient = +/- 3 mV / $^{\circ}$ C. Recommended Equalization Charge: Every seven (7) days. 4 additional hours at normal finish rate of 3.5 amps for 4 hours. Safety transition to END OF CHARGE at maximum voltage of 2.7 VPC.